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� Depression is associated with significant abnormalities in functional and structural connectivity.
� rTMS for treatment resistant depression modulates connectivity, normalising pre-treatment

abnormalities.
� Connectivity imaging can be used to optimise rTMS targeting, explore and predict treatment response.

a b s t r a c t

Repetitive transcranial magnetic stimulation (rTMS) is a relatively recent addition to the neurostimulation
armamentarium for treating individuals suffering from treatment refractory depression and has demon-
strated efficacy in clinical trials. One of the proposed mechanisms of action underlying the therapeutic
effects of rTMS for depression involves the modulation of depression-associated dysfunctional activity
in distributed brain networks involving frontal cortical and subcortical limbic regions, via changes to aber-
rant functional and structural connectivity. Although there is currently a paucity of published data, we
review changes to functional and structural connectivity following rTMS for depression. Current evidence
suggests an rTMS-induced normalisation of depression-associated dysfunction within and between large
scale functional networks, including the default mode, central executive and salience networks, associated
with an amelioration of depressive symptoms. Additionally, changes to measures of white matter
microstructure, primarily in the dorsolateral prefrontal cortex, have also been reported following rTMS
for depression, possibly reversing depression-associated abnormalities. We argue that measures of func-
tional and structural connectivity can be used to optimise rTMS targeting within the dorsolateral pre-
frontal cortex and also to explore novel rTMS targets for depression. Finally, we discuss the utility of
measures of brain connectivity as predictive biomarkers of rTMS treatment response in guiding therapeu-
tic decisions.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
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1. Introduction

A significant number of individuals suffering from major
depressive disorder (MDD) fail to achieve an adequate response
to currently available treatments and are thus considered to be suf-
fering from treatment resistant depression (TRD). A recent addition
to the neurostimulation armamentarium for the treatment of indi-
viduals suffering from TRD is repetitive transcranial magnetic
stimulation (rTMS). rTMS is a non-invasive technique for which
accumulated evidence has demonstrated efficacy and safety for
TRD (Perera et al., 2016), where clinical trials report moderate
effect sizes (Lam et al., 2008; Schutter, 2009; Slotema et al.,
2010; Berlim et al., 2014), and from a patient perspective is gener-
ally a well-tolerated treatment approach. Despite nearly two dec-
ades of research however, our understanding of the mechanisms
of action underlying the therapeutic effects of rTMS for depression
is still incomplete, possibly accounting for the modest rates of
response to treatment.

One of the proposed mechanisms of action involves the modu-
lation of distributed networks of brain regions distal to the target
of stimulation. These distal networks have demonstrated dysregu-
lation in depression and an association with the affective, cognitive
and vegetative symptoms of the disorder. Indeed, following rTMS
for depression, significant changes in neural activity in fronto-
limbic brain regions (e.g., Speer et al., 2000; Catafau et al., 2001;
Nahas et al., 2001; Shajahan et al., 2002; Loo et al., 2003; Kito
et al., 2008), and in neurobiological processes, including neuro-
transmission (e.g., Michael et al., 2003; Pogarell et al., 2006;
Luborzewski et al., 2007), HPA axis function (e.g., Pridmore,
1999; Zwanzger et al., 2003; Baeken et al., 2009), and neurotrophic
factor concentrations (e.g., Yukimasa et al., 2006; Zanardini et al.,
2006) have been reported. Considering this mechanism of action,
that is, the modulation of distal networks of brain regions associ-
ated with diverse neurobiological changes, the connectivity
between the rTMS target of stimulation with these distributed net-
works may provide a key to understanding the mechanisms under-
lying the therapeutic effects of rTMS for depression. The role of
brain connectivity in the mechanisms of action underlying the
therapeutic effects of rTMS for depression will be the focus of the
current review.

Following an initial review of depression-associated
abnormalities in brain connectivity and their relationship to the
major symptoms of the disorder, evidence is presented showing
significant changes in connectivity within these fronto-limbic net-
works following rTMS for depression (Kozel et al., 2011; Peng et al.,
2012; Baeken et al., 2014; Liston et al., 2014; Salomons et al.,
2014). Additionally, evidence is reviewed that suggests that
measures of pre-treatment functional connectivity predicts treat-
ment response. The mechanisms of action underlying these
rTMS-associated changes in connectivity and their implications
for the amelioration of depressive symptoms are then briefly dis-
cussed. In the context of these empirical findings, a method for
optimisation and individualisation of rTMS targeting utilising brain
connectivity neuroimaging is examined. Novel neuroanatomical
targets for rTMS are explored in the context of brain connectivity,
in an attempt to guide further research and a possible improve-
ment in the efficacy of the technique for treating depression.
Finally, the use of brain connectivity measures as biomarkers for
predicting a favourable treatment response to guide therapeutic
decisions is discussed.

A search of the published literature was conducted utilising the
Google Scholar and PubMed databases using the search terms
‘‘repetitive transcranial magnetic stimulation”, ‘‘depression”, ‘‘ma-
jor depressive disorder”, ‘‘treatment resistant depression”, in com-
bination with ‘‘structural connectivity”, ‘‘white matter”, ‘‘diffusion
tensor imaging”, ‘‘diffusion weighted imaging”, or ‘‘functional con-
nectivity”, ‘‘resting state network”, and ‘‘functional magnetic reso-
nance imaging”. Additionally, the reference lists of the identified
articles, along with meta-analyses, were checked for relevant
references.

2. Brain connectivity and depression

The pathophysiology of depression is currently understood to
involve significant dysfunction within distributed fronto-limbic
networks (e.g., Seminowicz et al., 2004), whose component regions
demonstrate complex patterns of interconnectivity. Recent
research on brain connectivity has been focussed on two main
areas; structural connectivity and functional connectivity. Struc-
tural connectivity refers to the anatomical connections of the brain
which provide the structural architecture for communication
between brain regions. The location of these tracts in the human
brain was historically only possible using histological techniques
post-mortem, however due to advances in brain imaging tech-
niques it is now possible map them in vivo, utilising a magnetic
resonance imaging technique referred to as diffusion weighted
imaging (DWI). DWI measures the movement of water molecules
in the brain over time, and whose restricted movement, due
mainly to the axon membranes, but also a contribution from mye-
lin (Beaulieu, 2002), is used to infer the underlying microstructure
of white matter.

The second area of brain connectivity research that is attracting
a lot of recent attention is functional connectivity, which is inferred
by the correlation of neurophysiological events in spatially sepa-
rated brain regions over time (Friston et al., 1993; van den
Heuvel and Hulshoff Pol, 2010). Functional connectivity can be
measured via a number of functional imaging techniques including
electroencephalography, magnetoencephalography, positron
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emission tomography and functional magnetic resonance imaging,
however the primary tool currently used is resting-state fMRI,
where the low-frequency (<0.1 Hz) spontaneous oscillations in
the blood oxygen level dependent (BOLD) signal are correlated in
regions considered to be functionally connected. Research has
found that these correlated regions are organised into networks,
termed intrinsic connectivity networks (ICNs), that subsume simi-
lar functions and remain coherent during activity and the resting
state (Greicius et al., 2003; Seeley et al., 2007; Yeo et al., 2011;
Buckner et al., 2013), and are therefore thought to represent a fun-
damental aspect of brain organisation.

Research suggests that functional connectivity is constrained by
the underlying structural connectivity (Greicius et al., 2009; Honey
et al., 2009; van den Heuvel et al., 2009; Van Dijk et al., 2010), how-
ever dynamic changes in functional connectivity over time suggest
that other complex processes also contribute (Buckner et al., 2013),
therefore techniques exploring both types of brain connectivity
will provide complementary information into brain function and
dysfunction. Indeed, patterns of dysfunction within ICNs and
abnormalities in anatomical connectivity have both been identified
in association with a number of psychological disorders, including
depression (e.g., Menon, 2011).

As rTMS is only currently indicated for TRD, the following sec-
tions describing patterns of functional and structural connectivity
associated with depression focusses on TRD, however evidence
for connectivity abnormalities associated with major depressive
disorder (MDD) in general is also presented. The reason this
approach was taken was not only the limited published evidence
that explores connectivity associated with TRD but that the evi-
dence published to date is ambiguous in terms of whether there
are any distinct differences in patterns of connectivity between
TRD and non-TRD. While some evidence suggests similar patterns
Fig. 1. Intrinsic connectivity networks (ICN’s) and depression. (a) Key nodes of the three
executive network, and green = the salience network, (b) Patterns of abnormal functiona
symptoms. Black arrows represent hyperconnectivity and white arrows represent hyp
prefrontal cortex; DMPFC, dorsomedial prefrontal cortex; IPL, inferior parietal lobe; LPL, l
VMPFC, ventromedial prefrontal cortex; VTA, ventral tegmental area. (For interpretation
version of this article.)
of abnormalities in connectivity between TRD and non-TRD in cir-
cuits associated with mood regulation and cognitive processing,
with differences only in the degree (Zhou et al., 2011; Peng et al.,
2013; De Kwaasteniet et al., 2015; Serafini et al., 2015), other evi-
dence suggests distinct patterns of connectivity associated with
TRD when compared to non-TRD (Lui et al., 2011; De
Kwaasteniet et al., 2015; Serafini et al., 2015).Therefore, evidence
of abnormal patterns of connectivity is presented for MDD in gen-
eral to provide a more comprehensive overview.

2.1. Functional connectivity and depression

Functional connectivity has mainly been explored within and
between three ICNs in association with depression; the default
mode network (DMN), the central executive network (CEN), and
the salience network (SN). Although research on ICNs and depres-
sion is still in its infancy, results published to date show abnormal
patterns of connectivity associated with the disorder when com-
pared to healthy individuals (see Fig. 1 for summary). Additionally,
changes in connectivity following treatment and patterns of pre-
treatment connectivity associated with a favourable clinical
response have also been reported; the latter suggesting a role for
connectivity measures as potential biomarkers for predicting
depression treatment outcome.

The primary brain regions that make up the DMN (Fig. 1a)
include the medial prefrontal cortex (ventral, VMPFC and dorsal,
DMPFC subdivisions) and the posterior cingulate cortex (PCC),
but also include the inferior parietal lobe, and hippocampal forma-
tion (Buckner et al., 2008; Andrews-Hanna et al., 2010). The DMN
has been shown to decrease in activity during goal-directed tasks
and increase activity during self-referential processing, and the
‘resting-state’ (Gusnard et al., 2001; Raichle et al., 2001).
main ICN’s studied in depression; red = the default mode network, blue = the central
l connectivity within and between ICN’s associated with depression and associated
oconnectivity. Abbreviations: ACC, anterior cingulate cortex; DLPFC, dorsolateral
ateral parietal lobe; PCC, posterior cingulate cortex; SCG, subgenual cingulate gyrus;
of the references to colour in this figure legend, the reader is referred to the web
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Abnormally increased DMN connectivity has been found in associ-
ation with depression (Kaiser et al., 2015), including in treatment
resistant individuals (Li et al., 2013; Liston et al., 2014), first epi-
sode treatment-naïve young adults (Zhu et al., 2012), adults diag-
nosed with MDD (Sambataro et al., 2014), and in late-life
depression (Alexopoulos et al., 2012). Additionally, increased con-
nectivity between the DMN and the subgenual cingulate gyrus
(SCG) (Greicius et al., 2007; Liston et al., 2014), the thalamus
(Greicius et al., 2007), and decreased connectivity with the bilat-
eral caudate (Bluhm et al., 2009), have also been reported in asso-
ciation with depression. Abnormal DMN connectivity has also
demonstrated a relationship to specific depressive symptoms, for
example, an association with negative forms of rumination
(Berman et al., 2011; Zhu et al., 2012; Hamilton et al., 2015), and
pessimism (Alexopoulos et al., 2012) have been reported. Support-
ing evidence for dysfunction within the DMN and its association
with depressive symptomatology comes from task-based fMRI
activation studies which have demonstrated a relationship
between DMN activity and depression symptom severity (Grimm
et al., 2009), as well as some of the prominent features of the
depressive disorder, including negative rumination (Hamilton
et al., 2011), altered emotion regulation (Sheline et al., 2009) and
feelings of hopelessness (Grimm et al., 2009). Considering this evi-
dence, abnormally increased functional connectivity within the
DMN appears to be associated with dysfunctional emotion regula-
tion, manifesting as an increased preoccupation with self-
referential processes such as negative rumination and pessimism.

The primary nodes of the CEN (Fig. 1a) include the dorsolateral
prefrontal cortex (DLPFC) and the lateral posterior parietal cortex,
but also include the ventrolateral prefrontal cortex and the thala-
mus (Seeley et al., 2007). The CEN has also been referred to as
the task-positive network due to increased activation of its nodes
during goal-directed, cognitively demanding tasks requiring sus-
tained attention, such as working memory tasks (Fox et al., 2005;
Seeley et al., 2007). Considering that depression has been associ-
ated with significant cognitive deficits, including memory and
attentional dysfunction (Austin et al., 2001; Rogers et al., 2004),
abnormalities of CEN connectivity may be expected. Indeed, when
compared to healthy control subjects, individuals diagnosed with
depression have demonstrated hypoconnectivity within the CEN
(Alexopoulos et al., 2012; Liston et al., 2014; Kaiser et al., 2015),
although increases in functional connectivity have also been
reported (Zhou et al., 2010).

The key nodes of the SN (Fig. 1a) include the dorsal anterior cin-
gulate cortex (dACC) and the frontoinsular cortex, but also include
subcortical regions, the amygdala and ventral tegmental area
(Seeley et al., 2007; Uddin, 2014). The SN is implicated in the
detection of personally salient and rewarding stimuli, via the inte-
gration of external and internal stimuli, of an emotional, homeo-
static and/or cognitive nature, and the guiding of an appropriate
behavioural response (Seeley et al., 2007; Menon, 2011; Goulden
et al., 2014; Uddin, 2014). Research has demonstrated significantly
decreased connectivity within the SN in individuals suffering from
depression when compared with healthy subjects, with this aber-
rant connectivity also demonstrating a significant relationship to
depressive symptom severity (Manoliu et al., 2014). Indirectly, a
recent meta-analysis demonstrated that when depressed individu-
als were exposed to negative affective stimuli (i.e., viewing sad
faces, viewing negative pictures, reading sad words), there was a
significant over-activation in the dACC, the insula and amygdala
(Hamilton et al., 2012), all key nodes in the SN. Evidence of dys-
function within the SN associated with depression suggests abnor-
malities in the detection of personally salient stimuli or a bias
towards negatively salient stimuli, which is consistent with the
depression-associated preoccupation with a negative view of the
self and external events (Beck, 2008).
These large-scale functional networks however do not operate
in isolation; complex interactions have been shown to occur, with
dysfunction in these dynamics associated with depressive symp-
tomatology (Menon, 2011; Manoliu et al., 2014). For example,
aberrant connectivity between networks has been implicated in
depression (see Fig. 1b), including abnormal hyperconnectivity
between the SN and DMN, and the DMN and CEN (Manoliu et al.,
2014; Liston et al., 2014; Kaiser et al., 2015). Individuals suffering
from depression have demonstrated DMN dominance over CEN,
which correlated with maladaptive rumination (Hamilton et al.,
2011). Additionally, abnormal switching between DMN and CEN
activity in depression has been suggested as a mechanism underly-
ing the preoccupation with self-referential processes, associated
with DMN hyperconnectivity, and deficits in cognitive functioning
and goal-directed behaviour, related to CEN hypoconnectivity
(Menon, 2011; Manoliu et al., 2014; Kaiser et al., 2015). The SN
has been identified as having a causal role in switching between
DMN and CEN activity, when resources are required to change
from internally to externally focused attention (Sridharan et al.,
2008; Menon and Uddin, 2010; Goulden et al., 2014), specifically
the anterior insula cortex, which has also demonstrated
depression-associated dysfunction. Overall, current evidence has
demonstrated significant dysfunction in connectivity within large
scale functional neural networks and complex interactions in con-
nectivity between networks, associated with depression.

2.2. Structural connectivity and depression

There is a hypothesis that has been advanced in the literature
that depression represents a ‘‘disconnection syndrome”, whereby
abnormalities in white matter microstructure ‘‘disconnect” path-
ways linking frontal cortical and subcortical limbic regions
involved in mood regulation and cognitive function (Sexton et al.,
2009; Liao et al., 2013). Although the term ‘‘disconnection syn-
drome” was originally applied to a range of neurological disorders
(Catani and Ffytche, 2005), in psychiatry it has been predominantly
applied to schizophrenia (e.g., Bullmore et al., 1997; Kubicki et al.,
2002). Recent evidence for the applicability of the term to depres-
sion has emerged from neuroimaging and histological research,
which has identified significant abnormalities in white matter
pathways in individuals suffering from depression when compared
to healthy control subjects, at all stages of the illness.

For example, utilising diffusion tensor imaging (DTI), research
has revealed significant reductions in fractional anisotropy (FA),
the diffusion metric most widely reported in the literature, in var-
ious frontal and limbic regions; in treatment-naïve young adults
suffering from a first episode of depression (Li et al., 2007b; Ma
et al., 2007; Zhu et al., 2011), adolescents diagnosed with MDD
(Cullen et al., 2010), a non-late-onset adult patient group suffering
from depression (Zou et al., 2008), late life depression (Taylor et al.,
2004; Bae et al., 2006), and in individuals suffering from treatment
resistant depression (TRD) (Li et al., 2007a; Peng et al., 2013; de
Diego-Adeliño et al., 2014). In fact, higher depression severity
was found to predict lower FA values at the whole brain level (de
Diego-Adeliño et al., 2014). Additionally, reduced FA values in
white matter associated with the anterior cingulate, DLPFC and
the insular cortex was found to predict the degree of executive dys-
function in late-life depression (Alexopoulos et al., 2002; Murphy
et al., 2007). Meta-analyses have identified a number of white mat-
ter pathways that have demonstrated microstructural abnormali-
ties associated with depression, including the superior
longitudinal fasciculus, the anterior thalamic radiation, the unci-
nate fasciculus, the medial forebrain bundle, inferior longitudinal
fasciculus, fronto-occipital fasciculus, posterior thalamic radiation
and the corpus callosum (Sexton et al., 2009; Murphy and Frodl,
2011; Liao et al., 2013).
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Supporting the neuroimaging findings is evidence from post-
mortem research in individuals who had suffered from depression,
which has shown significantly reduced myelin staining in the deep
white matter of the DLPFC (Regenold et al., 2007), and decreases in
the expression of oligodendroglia-related genes, genes that code
for various aspects of myelin-related functioning, and axon growth
and synaptic function, in the temporal cortex (Aston et al., 2005;
Sokolov, 2007). Overall, the evidence suggests that a significant
disruption to anatomical connectivity within fronto-limbic path-
ways is involved in the pathophysiology of depression.
3. rTMS for TRD; modulating dysfunctional connectivity

A number of studies have been published demonstrating
changes to measures of functional and structural connectivity fol-
lowing various depression treatment modalities. For example,
changes in white matter microstructure following ECT (Lyden
et al., 2014) and pharmacological treatment (Taylor et al., 2011),
and changes to patterns of functional connectivity within ICNs fol-
lowing psychotherapy (Crowther et al., 2015) and pharmacological
antidepressant treatment (Li et al., 2013), have been reported. The
current review however, will be limited to changes following rTMS
for depression. There is currently a paucity of published research
reporting on the impact that rTMS for depression has on functional
and structural connectivity. The studies that have been published
show significant changes in connectivity following rTMS, predom-
inantly reversing pre-treatment depression-associated abnormali-
ties. Additionally, pre-treatment functional connectivity has
demonstrated possible utility for predicting rTMS treatment
response. rTMS for TRD is applied to the brain at either high fre-
quency (HF,P5 Hz) or low frequency (LF, 61 Hz), driven by oppos-
ing local effects on cortical excitation, whereby HF stimulation has
demonstrated an increase and LF stimulation a decrease in local
neural activity (Pell et al., 2011), with the targeting of brain regions
showing abnormally decreased or increased activity respectively.
In the following discussion of rTMS and connectivity, it was consid-
ered premature to distinguish between the impact of different
stimulation parameters due to a paucity of published evidence,
however, stimulation frequency is noted when evidence is pre-
sented and the association between stimulation parameters and
connectivity is considered an important area of future research.
3.1. rTMS for TRD and functional connectivity

Following rTMS for depression, changes to functional connec-
tivity both within and between ICNs has been reported. For exam-
ple, following 25 sessions of 10 Hz rTMS to the left DLPFC (the
primary target used in rTMS for depression) over 5 weeks in a
group of individuals suffering from TRD, pre-treatment hypercon-
nectivity within the DMN significantly decreased and had largely
normalised relative to a control group, however no changes to
pre-treatment abnormal hypoconnectivity within the CEN was
observed (Liston et al., 2014). In the same study, changes to con-
nectivity between ICNs was also reported, with the induction of
an anticorrelation between the DLPFC (CEN node) and the DMN,
a pattern of connectivity that wasn’t apparent prior to treatment
(Liston et al., 2014). Similarly, following 20 sessions of 10 Hz rTMS
delivered bilaterally to the dorsomedial prefrontal cortex (DMPFC,
a recently investigated rTMS target for depression) an increased
anticorrelation between the DMPFC (DMN node) and the insula
(SN node), and increased connectivity with the thalamus (CEN
node) was found to be associated with a greater clinical response
(Salomons et al., 2014).

Resting-state functional connectivity measured at baseline may
provide a means by which to predict rTMS treatment response,
especially aberrant connectivity of the SCG. Indeed, abnormal
baseline hyperconnectivity between the SCG and VMPFC, DMPFC
and PCC (DMN nodes), and the DLPFC and posterior parietal cortex
(CEN nodes), was shown to predict a favourable clinical response
following left DLPFC rTMS (Liston et al., 2014). Similarly, a positive
clinical response was found to correlate with higher baseline
DMPFC to SCG (primarily positive), and SCG to DLPFC (primarily
negative) functional connectivity, following bilateral DMPFC rTMS
(Salomons et al., 2014). Responders to 20 Hz left DLPFC rTMS were
also found to have significantly greater baseline hyperconnectivity
of the SCG with the superior medial frontal gyrus (DMN node)
(Baeken et al., 2014). SCG connectivity with SN nodes has also been
implicated in the prediction of a clinical response, with lower base-
line connectivity between the SCG and the insula and the amyg-
dala, correlating with a more favourable clinical response to
DMPFC rTMS (Salomons et al., 2014). In addition to the predictive
utility of SCG functional connectivity, one study also found lower
baseline connectivity between the DMPFC (DMN node) and the
thalamus (CEN), and amygdala (SN), predicted a better clinical
response to DMPFC rTMS (Salomons et al., 2014).

3.1.1. Mechanisms underlying functional connectivity change
The mechanisms of action involved in functional connectivity

changes, at the cellular level is still poorly understood. Research
has shown that the oscillations in the BOLD signal that are used
to infer functional connectivity may relate to spontaneous neu-
ronal spiking activity (Shmuel and Leopold, 2008), and with rTMS
shown to modulate cortical excitability beyond the stimulation
train, implicating some form of neural plasticity (Pell et al.,
2011), rTMS, via repeated activation of the target region, may
change the spontaneous neural activity in proximal and distal
brain regions, subsequently altering their functional connectivity.
This is observed at the network level, with emerging evidence sug-
gesting a causal role for rTMS in regulating both within and
between network connectivity. One study, that utilised concurrent
TMS and fMRI in healthy subjects, demonstrated that stimulation
applied to the DLPFC, one of the major CEN nodes, directly modu-
lated connectivity within the DMN, primarily with the medial pre-
frontal cortex, and also induced connectivity changes within the
CEN (Chen et al., 2013).

Although only speculative, current evidence suggests that an
rTMS-induced normalisation of aberrant functional connectivity
within and between large scale networks underlies the ameliora-
tion of depressive symptomatology. For example, by stimulation
of a key CEN node (DLPFC), direct modulation of regions within
the DMN and SN may drive changes in abnormal functional con-
nectivity via a rebalancing of the dynamics in connectivity and
switching of neural activity in these networks; such as a reversal
of DMN dominance over CEN, resulting in inhibition of negative
rumination and driving improvements in executive functioning.

3.2. rTMS for TRD and structural connectivity

The primary brain region targeted with rTMS for depression has
been the DLPFC, which has demonstrated direct anatomical con-
nectivity to several fronto-limbic regions related to depressive
symptomatology (see Fig. 2), via white matter pathways with
depression-associated microstructural abnormalities. The DLPFC
is therefore in a prime position to directly modulate the activity
in these distal brain regions and to affect changes in the pathways
connecting them. Indeed, research in a small TRD patient group has
demonstrated a trend towards an increase in FA in the left pre-
frontal white matter following 4–6 weeks of daily 10 Hz rTMS to
the left DLPFC (Kozel et al., 2011), possibly reversing the decreases
in FA in this region associated with depression. Interestingly, the
same study (Kozel et al., 2011) found that following treatment,



Fig. 2. Anatomical connectivity of the dorsolateral prefrontal cortex (DLPFC) to regions involved in depression symptomatology. Solid arrows represent direct connectivity,
dashed arrows represent sparse or indirect connectivity. Abbreviations: ACC, anterior cingulate cortex; Amy, amygdala; DLPFC, dorsolateral prefrontal cortex; DS, dorsal
striatum; Hipp, hippocampus; Hyp; hypothalamus, Ins, insula; LC, locus coeruleus; NAc, nucleus accumbens; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; SCG,
subgenual cingulate gyrus; TMS, transcranial magnetic stimulation; VMPFC, ventromedial prefrontal cortex; VTA, ventral tegmental area.
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those in the active arm had higher FA in the left versus right pre-
frontal white matter, a pattern that was not observed in the sham
subjects, which the authors cautiously interpret as a positive effect
on white matter organisation within the stimulated hemisphere. A
more recent and larger study, reported a significant increase in FA
in the left middle frontal gyrus following 15 Hz rTMS to the left
DLPFC, in an area distal to the stimulation target, with the changes
in FA correlating with a reduction in the severity of depressive
symptoms (Peng et al., 2012). The same study (Peng et al., 2012)
also observed an increase in FA in the anterior lobe of the right
cerebellum. The change in FA in the cerebellum however, was
not correlated with the improvement in depression symptom
severity (Peng et al., 2012).
3.2.1. Mechanisms underlying structural connectivity change
Changes in anatomical connectivity following rTMS for depres-

sion, inferred by changes in diffusion imaging metrics, may involve
changes to various morphological characteristics of white matter,
including myelination, axonal growth, axon diameter and density,
and organisation of the white matter tracts. One of the main mech-
anisms thought to underlie sustained changes to cortical excitabil-
ity following rTMS is synaptic plasticity, in the form of long term
potentiation (LTP) or long term depression, although other poten-
tial mechanisms have been suggested (e.g., Pell et al., 2011). Assum-
ing this to be the case, axonal sprouting, which has been shown to
occur following stimulation-induced LTP in rats (Adams et al.,
1997), may be involved in rTMS-induced changes to white matter
microstructure. Also demonstrating an involvement in neuroplas-
ticity, axonal and dendritic growth and remodelling, synapse for-
mation and function, are a family of proteins called neurotrophins
(Bibel and Barde, 2000; Huang and Reichardt, 2001). Studies of
rTMS in depression have demonstrated an increase in brain derived
neurotrophic factor (BDNF) associated with a favourable clinical
response (Yukimasa et al., 2006; Zanardini et al., 2006), reversing
depression-associated deficits (Karege et al., 2002, 2005; Shimizu
et al., 2003; Gonul et al., 2005; Lee et al., 2007; Piccinni et al.,
2008, 2009), suggesting a possible association with white matter
microstructural changes following rTMS. Finally, beyond the
microstructural level, research has demonstrated evidence of
activity-dependent axonal re-routing in long range cortico-
cortical connections (Johansen-Berg, 2007), a mechanism that
may also underlie diffusion-related changes in white matter path-
ways via rTMS-induced neuronal activation. These are only a few
of the cellular processes, out of many, that may underlie changes
in white matter following rTMS, however will have to remain spec-
ulative until further empirical testing is undertaken.

In summary, current evidence, although limited, suggests
changes in white matter microstructure following rTMS for depres-
sion, in pathways proximal and distal to the target of stimulation,
and in a direction suggesting a normalisation of depression-
associated abnormalities. These changes in white matter
microstructure possibly contribute to the amelioration of depres-
sion symptomatology via improved connectivity, and therefore
restored communication, between frontal cortical and limbic
regions, associated with emotion regulation and cognitive
processing.
4. Discussion

Despite nearly two decades of research and minor improve-
ments in efficacy via various changes in treatment protocol, includ-
ing the duration of treatment course and stimulation intensity
(Gross et al., 2007; Fitzgerald and Daskalakis, 2013), overall
response rates to rTMS for depression continue to be modest, with
response rates of 29% to 46% and remission rates of 18% to 31%
reported (n = 1371, Berlim et al., 2014; n = 1132, Fitzgerald et al.,
2016). One relatively consistent factor in the treatment protocol
has been the targeting of the DLPFC and the method by which it
is located. Therefore, an opportunity exists to further improve rates
of response to rTMS for depression by optimising the method of
targeting stimulation and the exploration of novel neuroanatomi-
cal targets. This can be achieved by utilising measures of brain con-
nectivity, combined with evidence of the role connectivity plays in
rTMS treatment response, and the accumulating evidence of
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depression-related abnormalities in connectivity in fronto-limbic
pathways involved in emotion regulation and cognitive control.
Finally, an improvement in the rate of response to rTMS could be
realised if biomarkers of treatment response are used to guide
therapeutic decisions. The use of brain connectivity measures to
predict rTMS treatment response is discussed below.

4.1. Optimising rTMS targeting of the DLPFC using brain connectivity

The current, standard approach for targeting the DLPFC, in rTMS
for depression, involves evoking a response in the abductor pollicis
brevis muscle in the thumb by stimulating the contralateral motor
cortex and then measuring 5 cm rostrally along the curvature of
the scalp, however, this approach has been shown to inaccurately
target the DLPFC (Herwig et al., 2001). Additionally, there is also
evidence showing significant individual variability in the cytoar-
chitecture of the DLPFC (Rajkowska and Goldman-Rakic, 1995a,
b), and that distinct regions within the DLPFC subsume different
functions (Cieslik et al., 2013), which suggests that an individual
approach to targeting the DLPFC may be more appropriate. Indeed,
by utilising structural MRI, a neuro-navigational approach for
locating the DLPFC resulted in an improvement in the efficacy of
rTMS for depression over the standard technique (Fitzgerald
et al., 2009). Further suggesting that an individualised approach
to targeting rTMS may improve clinical outcomes, was a study that
found previously reported DLPFC targets with greater clinical
efficacy demonstrated stronger functional connectivity (an anti-
correlation) with the SCG (Fox et al., 2012a), and that the func-
tional connectivity between the DLPFC and SCG exhibits significant
differences between individuals which are reproducible across
time (Fox et al., 2012b). Caution is urged however, when consider-
ing using functional connections involving the SCG for individuals,
due to poor signal to noise ratio, and also that the reproducibility of
individual targets using functional connections based on anti-
correlations may be reduced when compared with positive corre-
lations (Fox et al., 2012b).

In addition to using functional connectivity, structural connec-
tivity analyses may also provide a strategy for individualising rTMS
targeting in the DLPFC. A number of white matter pathways involv-
ing the DLPFC have demonstrated significant microstructural
abnormalities associated with the depressive illness. These same
pathways connect the DLPFC to other cortical and subcortical lim-
bic regions that have demonstrated an involvement in depression
symptomatology and the prediction of a favourable clinical out-
come. Two such white matter tracts are the cingulum bundle and
medial forebrain bundle (MFB), and although they are not the only
tracts that connect the DLPFC to regions associated with depres-
sion, for example the superior longitudinal fasciculus and the ante-
rior thalamic radiation, evidence is presented that supports a major
role for these tracts in depression pathophysiology.

4.1.1. Cingulum bundle
The cingulum bundle is a medial association fibre tract, consid-

ered a major component of the limbic system, which connects the
DLPFC to the anterior and posterior cingulate, the SCG, DMPFC,
parietal cortex and the hippocampus, and has been found to con-
nect key nodes of the DMN (van den Heuvel et al., 2009). Depres-
sion research, utilising diffusion MRI, has demonstrated white
matter microstructural abnormalities in the cingulum bundle (i.e.
reduced FA) (Cullen et al., 2010; Kieseppä et al., 2010; de Diego-
Adeliño et al., 2014), and also a correlation between measures of
white matter microstructure and executive functioning
(Schermuly et al., 2010). Interestingly, never depressed individuals
with a family history of depression demonstrated a significant
reduction in FA bilaterally in the cingulum when compared to a
group without family histories of depression (Keedwell et al.,
2012), suggesting a vulnerability to depression associated with
white matter microstructural abnormalities in the cingulum. Addi-
tionally, the same study (i.e., Keedwell et al., 2012), found that the
reduction in FA in the cingulum correlated with anhedonia, a key
symptom of depression. Further, pre-treatment FA in the cingulum
bundle predicted remission following pharmacological antidepres-
sant treatment (i.e., two SSRI’s and an SNRI) (Korgaonkar et al.,
2014). Therefore, considering the role of the cingulum bundle in
the pathophysiology of depression and treatment response, map-
ping the extent of the tract in individuals suffering from depres-
sion, may provide a more refined rTMS target within the DLPFC,
with greater connectivity to, and therefore ability to modulate
activity within, emotion regulating and cognitive processing
regions.
4.1.2. Medial forebrain bundle
The MFB, a key pathway of the reward system, is a projection

tract connecting the ventral tegmental area (VTA) with the nucleus
accumbens (NAc), hypothalamus, then on to frontal cortical
regions, including the orbitofrontal cortex and the DLPFC (Zahm,
2006; Coenen et al., 2012). The MFB has been found to exhibit sig-
nificant white matter microstructural abnormalities associated
with depression, predominately reductions in FA, which have also
demonstrated a correlation with overall depression severity, anhe-
donia and sadness (Blood et al., 2010; Bracht et al., 2014, 2015),
suggesting that the integrity of the MFB is important for emotion
regulation and is a possible target pathway for depression treat-
ment. Supporting the use of the MFB as a target for depression
treatment and diffusion imaging as a targeting strategy, a pilot
study that used DTI to individually target deep brain stimulation
to the supero-lateral branch of the MFB (slMFB), proximal to the
VTA, was shown to have rapid antidepressant effects in a group
suffering a severely treatment-resistant depression (Schlaepfer
et al., 2013). Interestingly, a tractographic study of the four brain
regions used historically as surgical ablation targets to treat severe
treatment refractory depression, found that each of the sites had
shared connectivities with the slMFB (Schoene-Bake et al., 2010),
further implicating the importance of this white matter tract in a
clinical recovery from depression. Therefore, utilising diffusion
MRI to map the MFB in individuals, focusing on the supero-
lateral branch, and assessing regions of greater anatomical connec-
tivity with the DLPFC, may provide rTMS stimulation targets with a
greater ability to directly modulate reward-related circuitry.
4.2. Novel rTMS targets for depression using brain connectivity

In addition to providing an individualised approach to DLPFC
targeting, functional and structural connectivity analyses may also
lead to the identification of novel rTMS targets for treating depres-
sion. The exploration of novel targets for rTMS needs to take into
account the limitation of the technique to the focal stimulation
of superficial cortical regions but also to keep in mind that modu-
lation of distal regions via transsynaptic connectivity is one of the
putative mechanisms by which rTMS exerts its therapeutic effects.
A number of alternative cortical rTMS targets have been suggested
for treating TRD, including the cerebellum (Schutter and van Honk,
2005; Wu and Baeken, 2016) and the ventro-lateral prefrontal cor-
tex (Downar and Daskalakis, 2013). The parietal cortex and the
dorsomedial prefrontal cortex (DMPFC), with extensive connectiv-
ity to networks of regions associated with emotion regulation and
cognitive processing (Downar et al., 2016), and key regions
involved in a favourable clinical response to rTMS for depression,
suggest that they are excellent candidates as alternative rTMS
targets.
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4.2.1. Parietal cortex
Abnormalities in both functional and structural connectivity

have been reported in the parietal cortex in association with
depression, for example, reduced functional connectivity between
the right parietal lobe and the DLPFC, both key nodes of the CEN
(Ye et al., 2012; Liston et al., 2014), and significant reductions in
FA in the parietal portion of the superior longitudinal fasciculus
(SLF) (Zou et al., 2008; Wu et al., 2011). In support of using the
parietal cortex as an rTMS target for depression, rTMS research in
healthy subjects has demonstrated significantly reduced ratings
of depressive mood following 2 Hz rTMS to the right parietal cortex
in a placebo controlled study (van Honk et al., 2003). Similarly,
rTMS to the left parietal cortex in healthy subjects, utilising
resting-state fMRI to individually target stimulation to a parietal
region with high functional connectivity to the hippocampus,
found an enhancement in associative memory and an increase in
functional connectivity between the stimulation target and hip-
pocampus (Wang et al., 2014), suggesting a possible target for
ameliorating memory deficits associated with depression. Finally,
clinical research has also provided evidence that 2 Hz rTMS to
the right parietal cortex in a group suffering from depression,
demonstrated significant antidepressant effects compared to sham,
for partial responders when compared with non-responders
(Schutter et al., 2009).

To aid in the identification of individual rTMS targets within the
parietal cortex measures of structural and functional connectivity
may be utilised, for example, by mapping regions of higher func-
tional connectivity between the posterior parietal cortex and the
SCG, which has been shown to predict a greater clinical response
to DLPFC rTMS for depression (Liston et al., 2014). The parietal cor-
tex, via the SLF and the cingulum bundle, has direct anatomical
connections to key fronto-limbic regions associated with emotion
regulation and cognitive processing, including the DLPFC, SCG
and the hippocampus. Therefore, mapping the architecture of these
tracts using diffusion imaging and tractography may also provide
individual rTMS targets within the parietal cortex.

4.2.2. Dorsomedial prefrontal cortex
A study that used resting-state MRI to explore for unique pat-

terns of functional connectivity in depression found that the
DMPFC demonstrated increased connectivity with all three ICNs
studied (i.e., the CEN, DMN, and an affective network), a pattern
that was not observed in a healthy control group (Sheline et al.,
2010), suggesting a central role for this brain region in the patho-
physiology of depression. The DMPFC is also connected to the SCG,
via the cingulum bundle (Croxson et al., 2005), a region whose pre-
treatment functional connectivity has demonstrated a utility for
predicting rTMS treatment response (Baeken et al., 2014; Liston
et al., 2014; Salomons et al., 2014), and is considered a key region
involved in emotion regulation (Mayberg et al., 1999; Phillips et al.,
2003). Based on the argument that stimulation of the DMPFCmight
have a more direct effect on the emotion-regulating regions of the
brain than the DLPFC, recent rTMS research found that the DMPFC
may indeed be an efficacious target for treating depression
(Downar et al., 2014; Salomons et al., 2014; Bakker et al., 2015;
Schulze et al., 2016).

The DMPFC has demonstrated significant functional segregation
into regions that subsume differing high level cognitive functions
(Eickhoff et al., 2016), suggesting that a more refined approach to
targeting DMPFC rTMS might be possible. Indeed, a caudal-left
subregion of the DMPFC was found to have functional connectivity
to the SN, specifically the anterior cingulate cortex and the anterior
insula (Eickhoff et al., 2016). Research suggests that the SN, pri-
marily the fronto-insula cortex, plays a causal role in driving
switching between DMN and CEN (Sridharan et al., 2008;
Goulden et al., 2014), and that depression is associated with
abnormal switching between DMN and CEN (e.g., Menon, 2011;
Manoliu et al., 2014) and DMN dominance over CEN (Hamilton
et al., 2011). Therefore, left-caudal DMPFC rTMS, may stimulate
the anterior insula cortex, via direct anatomical connectivity
(Ghaziri et al., 2015), and drive changes in functional connectivity
between the DMN and CEN in a direction conducive to the amelio-
ration of depressive symptoms. Indeed, DMPFC rTMS has demon-
strated changes in functional connectivity between the DMPFC
and the insula, associated with a better clinical response
(Salomons et al., 2014).

The decision as to which target should be utilised in clinical
practice will primarily depend on the efficacy that has been
demonstrated in clinical trials, however with increasing neu-
roimaging evidence demonstrating significant inter-individual
variability in functional and structural connectivity, combined
with heterogeneity in the clinical presentation of depression, an
individualised approach to rTMS targeting may be more appropri-
ate. For example, an individualised approach may be driven by the
type of depression experienced, such as melancholic depression, a
depression subtype characterised by pervasive anhedonia (Harald
and Gordon, 2012), where white matter microstructural abnormal-
ities in the medial forebrain bundle (MFB) have been found to be
greater in melancholic when compared to non-melancholic groups
(Bracht et al., 2014). Therefore, cortical targets with connections to
the MFB, a projection tract connecting the frontal cortex to key
regions of the reward system that has been successfully targeted
with deep brain stimulation for TRD, partly due to its association
with anhedonia (Schlaepfer et al., 2013), may prove an appropriate
rTMS target for the melancholic subtype of depression. This
approach however, makes the assumption that stimulating path-
ways with abnormalities in connectivity is best for ameliorating
depressive symptoms, whereas stimulating intact pathways with
connections to emotion regulating and cognitive processing net-
works may be a superior approach. This issue will need to be
addressed with future empirical research and could be critical to
brain stimulation targeting for depression treatment. An individu-
alised approach to targeting will also benefit from the emerging
body of neuroimaging evidence that demonstrates patterns of
pre-treatment connectivity that predict rTMS treatment response.
4.3. Predicting rTMS treatment response using brain connectivity

Pre-treatment measures of functional connectivity have
demonstrated promise as predictive biomarkers of treatment
response to rTMS for depression. Current evidence has highlighted
aberrant functional connectivity of the SCG, especially higher con-
nectivity with nodes of the DMN, but also higher connectivity with
nodes of the CEN and lower connectivity with nodes of the SN, all
predicting a favourable clinical response (e.g., Baeken et al., 2014;
Liston et al., 2014; Salomons et al., 2014). The SCG is a region
increasingly identified in the pathophysiology of depression
(Drevets et al., 1997, 2002; Drevets, 1999, 2000; Botteron et al.,
2002) and has been used successfully as the target of deep brain
stimulation for a severely treatment resistant form of depression
(Mayberg et al., 2005; Lozano et al., 2008; Anderson et al., 2012).
Supporting the importance of the SCG in depression treatment out-
comes is evidence demonstrating the predictive utility of pre-
treatment activity in the SCG via various other treatment modali-
ties, including psychotherapy, pharmacotherapy and sleep depri-
vation (Mayberg et al., 1997; Wu et al., 1999; Siegle et al., 2006;
Konarski et al., 2009). Finally, in addition to patterns of functional
connectivity involving the SCG, other patterns of functional con-
nectivity between the DMN, CEN and SN have also demonstrated
promise for predicting rTMS treatment response, and therefore
should be part of future research into predictive biomarkers.
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Although only a few studies have been published to date, and
with sample sizes that preclude the exploration of measures of
white matter microstructure as a clinical predictor for rTMS for
depression, evidence from other depression treatment modalities
suggest utility for predicting a clinical response. Diffusion metrics
within fronto-limbic white matter tracts, including the cingulum
bundle, superior longitudinal fasciculus, and uncinate fasciculus,
have been shown to predict a favourable clinical response to vari-
ous depression treatment modalities, including deep brain stimu-
lation (Riva-Posse et al., 2014) and ECT (Lyden et al., 2014), and
also to pharmacological antidepressant treatment (Alexopoulos
et al., 2002, 2008; Korgaonkar et al., 2014). This evidence may
guide future research into the use of measures of white matter
microstructure as predictors of clinical response to rTMS for
depression, keeping in mind however that rTMS may ameliorate
depressive symptoms via unique neural pathways compared to
other depression treatment modalities (e.g., Seminowicz et al.,
2004). Additionally, future research may also assess the relation-
ship between some of the potential clinical predictors of rTMS
response, such as length of current depressive episode, age, and
degree of treatment resistance (Fitzgerald et al., 2016; Wu and
Baeken, 2016) and their impact on functional and structural con-
nectivity as a means to developing a robust and clinically applica-
ble predictor of rTMS response.
5. Conclusions

Advances in neuroimaging technology have allowed research
into brain connectivity and its dysfunction associated with psy-
chopathology, and has thus advanced our understanding of depres-
sion as a dysfunction in large scale neural networks where
disconnections between predominantly fronto-limbic regions
underlies the key symptomatology. Measures of functional and
structural connectivity have also advanced our understanding of
the mechanisms of action underlying the therapeutic effects of
rTMS for depression at the network level, and although a paucity
of research has been published to date, significant changes to con-
nectivity have been reported in directions suggesting a normalisa-
tion of depression-associated abnormalities. Additionally, aberrant
pre-treatment functional connectivity, especially increased con-
nectivity of the subgenual cingulate gyrus with nodes of the
default mode network, shows promise as a biomarker for predict-
ing rTMS treatment response. Utilising this evidence, optimisation
and individualisation of rTMS targeting, and the exploration of
alternative rTMS targets may lead to a better clinical response to
rTMS treatment for depression.
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